欢迎来到好轻松考研.广东学校官网(广州|深圳|珠三角)| 专业研究生考试培训教育机构
广州考研培训机构 > 考研科目资讯 > 考研数学资讯

2021考研数学:高数牢记定理(四)

2020-07-07 18:49:00 来源:互联网 作者:考研小编
摘要:如果一元函数在某点具有导数,则它在该点定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。

对于考研数学来说,高数部分很重要,要想拿分,须把一些定理记牢。为此,新航道好轻松考研整理了“2021考研数学:高数定理牢记(四)”的文章,希望对大家有所帮助。

考研数学2.png

1、多元函数极限存在的条件

       极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。例如函数:f(x,y)=0(xy)/(x^2+y^2)x^2+y^2&ne0


2、多元函数的连续性定义

       设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0&isinD,如果lim(x&rarrx0,y&rarry0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。

       性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。

       性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。


3、多元函数的连续与可导

如果一元函数在某点具有导数,则它在该点定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。


4、多元函数可微的要条件

      一元函数在某点的导数存在是微分存在的充分要条件,但多元函数各偏导数存在只是全微分存在的要条件而不是充分条件,即可微=>可偏导。


5、多元函数可微的充分条件

       定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。


6.多元函数极值存在的要、充分条件

       定理(要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数为零。

       定理(充分条件)设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)AC-B2>0时具有极值,且当A0时有极小值(2)AC-B2


7、多元函数极值存在的解法

      (1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。

      (2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B、C.(3)定出AC-B2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。


考研学子想要了解更多考研资讯、复习资料与备考经验,可以搜索新航道好轻松考研,祝2021考研学子备考顺利,有志者终成硕士!

好轻松考研 了解更多>

好轻松考研专注于国内大学生高端考研培训。以“高能高分”为教育理念,倡导考生遵循学习的基本规律,稳扎稳打,以轻松的心态来学习。好轻松考研以“学术、励志、激情”为教学风格,倡导教师学术过硬,注重鼓励引导,充满激情的为考生授课。好轻松考研以独创英语学习领域 4R 个性化培训为服务体系,确保考生达成理想的学习效果。

考研师资团 更多师资 >

陈采霞老师

新航道好轻松考研学术专家。上世纪八十年代北京师范大学翻译 学硕士,曾任国际关系学院副教授,有 30 多年的英语教学与翻译经验, 曾多次被评为优秀教师;出版著作与译作 10 多部;1997 年开始从事 考研培训,对考研英语有深入独到的研究,并曾多次参加全国硕士研 究生英语试卷阅卷工作;独创考研英语“四步定位翻译法”、“词汇四通 记忆法”等,著有《考研英语十年真题点石成金》《考研英语核心词汇 笔记》《考研英语英译汉四步定位翻译法》等畅销书。

免费试听课
广州 深圳 佛山 其他
英语 政治 数学 考研留学