2021考研数学:高数牢记定理(四)
对于考研数学来说,高数部分很重要,要想拿分,须把一些定理记牢。为此,新航道好轻松考研整理了“2021考研数学:高数定理牢记(四)”的文章,希望对大家有所帮助。
1、多元函数极限存在的条件
极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。例如函数:f(x,y)=0(xy)/(x^2+y^2)x^2+y^2&ne0
2、多元函数的连续性定义
设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0&isinD,如果lim(x&rarrx0,y&rarry0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。
性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。
性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。
3、多元函数的连续与可导
如果一元函数在某点具有导数,则它在该点定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。
4、多元函数可微的要条件
一元函数在某点的导数存在是微分存在的充分要条件,但多元函数各偏导数存在只是全微分存在的要条件而不是充分条件,即可微=>可偏导。
5、多元函数可微的充分条件
定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。
6.多元函数极值存在的要、充分条件
定理(要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数为零。
定理(充分条件)设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)AC-B2>0时具有极值,且当A0时有极小值(2)AC-B2
7、多元函数极值存在的解法
(1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。
(2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B、C.(3)定出AC-B2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。
考研学子想要了解更多考研资讯、复习资料与备考经验,可以搜索新航道好轻松考研,祝2021考研学子备考顺利,有志者终成硕士!
- 考研数学:如何巧妙的安排复习时间? 03-02
- 考研数学:单项选择题快速答题技巧 03-02
- 2022考研数学:线性代数之矩阵题解题思路 02-19
- 2022考研数学:这个四个名词不可忽视! 02-19
- 2022考研数学:如何提高复习效率? 02-19
- 2022考研数学-高数复习的先后顺序是什么? 02-08
- 考研数学复习:题海战术训练的三大原则 01-27
- 考研数学:如何用简单的知识解决复杂问题? 01-22
- 期末考试高数挂科了,考研数学还有希望吗?考研数学如何拿高分? 01-22
- 考研数学:单选题和证明题解题技巧 01-21
- 考研数学:选择题解题技巧讲解 01-21
- 2021考研数学:备考时间规划指南! 01-15
好轻松考研 了解更多>

好轻松考研专注于国内大学生高端考研培训。以“高能高分”为教育理念,倡导考生遵循学习的基本规律,稳扎稳打,以轻松的心态来学习。好轻松考研以“学术、励志、激情”为教学风格,倡导教师学术过硬,注重鼓励引导,充满激情的为考生授课。好轻松考研以独创英语学习领域 4R 个性化培训为服务体系,确保考生达成理想的学习效果。
考研名师团 更多师资 >

陈采霞老师
新航道好轻松考研首席学术专家。上世纪八十年代北京师范大学翻译 学硕士,曾任国际关系学院副教授,有 30 多年的英语教学与翻译经验, 曾多次被评为优秀教师;出版著作与译作 10 多部;1997 年开始从事 考研培训,对考研英语有深入独到的研究,并曾多次参加全国硕士研 究生英语试卷阅卷工作;独创考研英语“四步定位翻译法”、“词汇四通 记忆法”等,著有《考研英语十年真题点石成金》《考研英语核心词汇 笔记》《考研英语英译汉四步定位翻译法》等畅销书。