欢迎来到好轻松考研.广东学校官网(广州|深圳|珠三角)| 专业研究生考试培训教育机构
广州考研培训机构 > 考研科目资讯 > 考研数学资讯

2021考研数学:高数牢记定理(三)

2020-07-07 18:43:00 来源:互联网 作者:考研小编
摘要: 如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

对于考研数学来说,高数部分很重要,要想拿分,须把一些定理记牢。为此,新航道好轻松考研整理了“2021考研数学:高数定理牢记(三)”的文章,希望对大家有所帮助。

考研数学1.jpg

中值定理与导数的应用

     1、定理(罗尔定理)

如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点&xi(a

      2、定理(拉格朗日中值定理)

如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点&xi(a

     3、定理(柯西中值定理)

如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点&xi,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(&xi)/F’(&xi)成立。

     4、洛达法则应用条件只能用与未定型诸如0/0、&infin/&infin、0×&infin、&infin-&infin、00、1&infin、&infin0等形式。

     5、函数单调性的判定法

设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加    (2)如果在(a,b)内f’(x)

      如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

     6、函数的极值

      如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

       在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

       定理(函数取得极值的要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f’(x)恒为正当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值(2)如果当x取x0左侧临近的值时,f’(x)恒为负当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值(3)如果当x取x0左右两侧临近的值时,f’(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。

       定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f’(x0)=0,f’’(x0)&ne0那么:(1)当f’’(x0)0时,函数f(x)在x0处取得极小值驻点有可能是极值点,不是驻点也有可能是极值点。

      7、函数的凹凸性及其判定

       设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2][f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。

设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f’’(x)>0,则f(x)在闭区间[a,b]上的图形是凹的(2)若在(a,b)内f’’(x)

       判断曲线拐点(凹凸分界点)的步骤(1)求出f’’(x)(2)令f’’(x)=0,解出这方程在区间(a,b)内的实根(3)对于(2)中解出的每一个实根x0,检查f’’(x)在x0左右两侧邻近的符号,如果f’’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

       在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。


考研学子想要了解更多考研资讯、复习资料与备考经验,可以搜索新航道好轻松考研,祝2021考研学子备考顺利,有志者终成硕士!


好轻松考研 了解更多>

好轻松考研专注于国内大学生高端考研培训。以“高能高分”为教育理念,倡导考生遵循学习的基本规律,稳扎稳打,以轻松的心态来学习。好轻松考研以“学术、励志、激情”为教学风格,倡导教师学术过硬,注重鼓励引导,充满激情的为考生授课。好轻松考研以独创英语学习领域 4R 个性化培训为服务体系,确保考生达成理想的学习效果。

考研名师团 更多师资 >

陈采霞老师

新航道好轻松考研首席学术专家。上世纪八十年代北京师范大学翻译 学硕士,曾任国际关系学院副教授,有 30 多年的英语教学与翻译经验, 曾多次被评为优秀教师;出版著作与译作 10 多部;1997 年开始从事 考研培训,对考研英语有深入独到的研究,并曾多次参加全国硕士研 究生英语试卷阅卷工作;独创考研英语“四步定位翻译法”、“词汇四通 记忆法”等,著有《考研英语十年真题点石成金》《考研英语核心词汇 笔记》《考研英语英译汉四步定位翻译法》等畅销书。

免费试听课
广州 深圳 佛山 其他
英语 政治 数学 考研留学